123 research outputs found

    Next Generation Service Delivery Platforms and Service Overlay Networks

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively

    Preventing Distributed Denial-of-Service Attacks on the IMS Emergency Services Support through Adaptive Firewall Pinholing

    Full text link
    Emergency services are vital services that Next Generation Networks (NGNs) have to provide. As the IP Multimedia Subsystem (IMS) is in the heart of NGNs, 3GPP has carried the burden of specifying a standardized IMS-based emergency services framework. Unfortunately, like any other IP-based standards, the IMS-based emergency service framework is prone to Distributed Denial of Service (DDoS) attacks. We propose in this work, a simple but efficient solution that can prevent certain types of such attacks by creating firewall pinholes that regular clients will surely be able to pass in contrast to the attackers clients. Our solution was implemented, tested in an appropriate testbed, and its efficiency was proven.Comment: 17 Pages, IJNGN Journa

    Next Generation Service Delivery Platforms

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively

    Optimization of Elastic Cloud Brokerage Mechanisms for Future Telecommunication Service Environments

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Cloud computing mechanisms and cloud-based services are currently revolutionizing Web as well as telecommunication service platforms and service offerings. Apart from providing infrastructures, platforms and software as a service, mechanism for dynamic allocation of compute and storage resources on-demand, commonly termed as “elastic cloud computing” account for the most important cloud computing functionalities. Resource elasticity allows not only for efficient internal compute and storage resource consumption, but also, through so called hybrid cloud computing mechanisms, for dynamic utilization of external resources on-demand. This capability is especially useful in order to cost-efficiently cope with peakworkloads, allowing service providers to significantly reduce usually required over-provisioned service infrastructures, allowing for “pay-per-use” cost models. With a steadily growing number of cloud providers and with the proliferation of unified cloud computing interfaces, service providers are given free choice of flexibly selecting and utilizing cloud resources from different cloud providers. Cloud brokering systems allow for dynamic selection and utilization of cloud computing resources based on functional (e.g. QoS, SLA, energy consumption) as well as nonfunctional criteria (e.g. costs). The presented work focuses on enhanced cloud brokering mechanisms for telecommunication service platforms, enabling quality telecommunication service assurance, still optimizing cloud resources consumption, i.e. saving costs and energy. Furthermore this work shows that by combining cloud brokering mechanisms with standardized telecommunication service brokering mechanisms an even greater benefit for telecommunication service providers can be achieved as this enables an even better cost-efficiency since different user segments can seamlessly be served by allocating different cloud resources to them in a policy-driven manner

    A Framework for Handling Heterogeneous M2M Traffic

    Get PDF
    Sensors, actuators and devices that compose the Internet of Things (IoT) world are becoming more diverse every day in terms of capabilities and amount of generated traffic. Current Machine-to-Machine (M2 M) communication standardization efforts try to formalize the interfaces between M2 M nodes based on the perspective of exchanging uniform small data size with low sampling rate only. However, many devices will require support for more heterogeneous traffic patterns, with different network capacity. This paper introduces a communication concept for supporting gracefully a heterogeneous set of devices. This paper analyses the effect of traffic size in M2 M transactions and propose a concept to adapt gracefully to support heterogeneous traffic patterns in M2 M systems. To prove its feasibility, the concept is exemplified on top of oneM2 M architecture and implemented as part of the Fraunhofer FOKUS OpenMTC toolkit. Additionally, the concept was applied to a deployment in an E-Health pilot and practical measurements during functional evaluation are reported

    Prototyping nfv-based multi-access edge computing in 5G ready networks with open baton

    Get PDF
    With the increasing acceptance of Network Function Virtualization (NFV) and Software Defined Networking (SDN) technologies, a radical transformation is currently occurring inside network providers infrastructures. The trend of Software-based networks foreseen with the 5th Generation of Mobile Network (5G) is drastically changing requirements in terms of how networks are deployed and managed. One of the major changes requires the transaction towards a distributed infrastructure, in which nodes are built with standard commodity hardware. This rapid deployment of datacenters is paving the way towards a different type of environment in which the computational resources are deployed up to the edge of the network, referred to as Multi-access Edge Computing (MEC) nodes. However, MEC nodes do not usually provide enough resources for executing standard virtualization technologies typically used in large datacenters. For this reason, software containerization represents a lightweight and viable virtualization alternative for such scenarios. This paper presents an architecture based on the Open Baton Management and Orchestration (MANO) framework combining different infrastructural technologies supporting the deployment of container-based network services even at the edge of the network.EC/H2020/687860/EU/Software Defined Networks and Network Function Virtualization Testbed within FIRE+/SoftFIR

    Unified representation of monitoring information across federated cloud infrastructures

    Get PDF
    Nowadays one of the issues hindering the potential of federating cloud-based infrastructures to reach much larger scales is their standard management and monitoring. In particular, this is true in cases where these federated infrastructures provide emerging Future Internet and Smart Cities-oriented services, such as the Internet of Things (IoT), that benefit from cloud services. The contribution of this paper is the introduction of a unified monitoring architecture for federated cloud infrastructures accompanied by the adoption of a uniform representation of measurement data. The presented solution is capable of providing multi-domain compatibility, scalability, as well as the ability to analyze large amounts of monitoring data, collected from datacenters and offered through open and standardized APIs. The solution described herein has been deployed and is currently running on a community of 5 infrastructures within the framework of the European Project XIFI, to be extended to 12 more infrastructures

    Organic 6G Networks: Vision, Requirements, and Research Approaches

    Get PDF
    Building upon the significant number of already published 6G position papers, we are concentrating on the immediate next steps toward turning the research vision of software-centric networks into reality. This is accomplished, by summarizing and assessing the various requirements documents and providing a significant number of specific research directions and approaches in order to fulfill them. This article complements the existing body of work, by focusing on future core networks and their infrastructures, yet maintaining a system-level perspective and progressing in the direction of scoping key technology elements and providing high-potential research approaches for them. Additionally, we rigorously discuss the impact that different technological advancements have on the other parts of the system, to provide a coherent, end-to-end network understanding. This is in strong contrast to current approaches, where from the challenges, each research direction becomes independent and, thus, its advances are potentially cancelled out by the next technology in the chain. By maintaining this system perspective, the adoption of the different technologies becomes easier, as they are developed in unison. To address the requirements in a coherent, holistic, and unified way, we extend our high-level architecture concept named “Organic 6G Networks” towards a comprehensive end-to-end system. A holistic software-centric system, adapting the latest software development advancements from the IT industry. The Organic 6G network provides support for building a streamlined software network architecture and offers the next step on the path towards the development and specification of future mobile networks
    • …
    corecore